Voice Service Interworking for PSTN and IP Networks
Voice Service Interworking for PSTN and IP Networks

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Voice Service Interworking</td>
<td>3</td>
</tr>
<tr>
<td>Five Scenarios for Voice Communications</td>
<td>3</td>
</tr>
<tr>
<td>The PSTN Voice Service</td>
<td>4</td>
</tr>
<tr>
<td>Voice Services over IP</td>
<td>4</td>
</tr>
<tr>
<td>H.323 Systems</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid Voice Services</td>
<td>6</td>
</tr>
<tr>
<td>Signaling and Control</td>
<td>7</td>
</tr>
<tr>
<td>Signaling Adaptation Functions</td>
<td>7</td>
</tr>
<tr>
<td>SS7 Interoperability</td>
<td>7</td>
</tr>
<tr>
<td>Addressing</td>
<td>9</td>
</tr>
<tr>
<td>Media Control Functions</td>
<td>10</td>
</tr>
<tr>
<td>Media Adaptation Functions</td>
<td>11</td>
</tr>
<tr>
<td>QoS- and IP-Based Networks</td>
<td>11</td>
</tr>
<tr>
<td>QoS and End Systems</td>
<td>12</td>
</tr>
<tr>
<td>Management Issues</td>
<td>14</td>
</tr>
<tr>
<td>Service Creation</td>
<td>14</td>
</tr>
<tr>
<td>OAM-Like Features</td>
<td>14</td>
</tr>
<tr>
<td>Network and System Management</td>
<td>15</td>
</tr>
<tr>
<td>Policy Management</td>
<td>15</td>
</tr>
<tr>
<td>Security</td>
<td>15</td>
</tr>
<tr>
<td>Dependence on the Regulatory Framework</td>
<td>16</td>
</tr>
<tr>
<td>Conclusion</td>
<td>16</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
</tbody>
</table>
Voice Service Interworking for PSTN and IP Networks

By M. Hamdi, EPFL; O. Verscheure, EPFL; I. Dalgiç, 3Com Corporation; J.-P. Hubaux, EPFL; and P. Wang, 3Com Corporation

In recent years, the Internet has proven its ability to carry real-time data, including voice. Today, a small amount of voice traffic has already been diverted from the public switched telephone network (PSTN) to the Internet. If it expands, this phenomenon could completely change the rules of the game for telecommunications.

This paper presents an overview of the main technical problems to be addressed for the provision of interoperable services between IP telephony and the PSTN. The pivotal element of the solution resides in an interworking function (IWF). This function is typically implemented in a gateway whose requirements and behavior are here analyzed in terms of signaling and control protocols (control plane), user data transfer (user plane), and management features (management plane).

The presentation is structured around these three planes. The control plane defines the set of signaling protocols to be used in each networking context and the translation between them. Detailed scenarios illustrate the signal translation in the gateway allowing for the establishment of a hybrid phone call. The user plane is responsible for adapting the user data to the properties of each network channel and determines the Quality of Service (QoS) of the voice call in terms of delay and speech quality. In the management plane, the issues of network, service, security, and policy management are discussed.

Introduction

IP telephony is becoming a very successful voice technology as evidenced by the burgeoning market for computer-based telephony products. This was enabled by recent advances in different technologies. In the signal processing field, new speech compression standards allow voice signals to be coded at very low bit rates while keeping their quality acceptable for conversational services. Moreover, the increasing bandwidth in IP access networks associated with the increasing routing capacity in the IP backbone makes it possible to reach an interactivity level similar to that offered by circuit switched networks. In addition, the dramatic growth of IP terminals with expanding processing power, memory, and multimedia capabilities allows IP-based voice services to be deployed on a very large scale.

On the other hand, the PSTN has made very impressive achievements in terms of coverage, reliability, and ease of use. The number of lines is still increasing today, and will soon reach the milestone of one billion. The availability of the service is such that users are accustomed to receiving dial tone every time they pick up the phone and to being connected to any selected called party. PSTN terminals are also usable by most disabled people and people with limited education. In addition, the telephone network is being extended by cellular networks, which have already attracted more than 200 million subscribers; this growth is almost as dramatic as that of the Internet.

Matching these features with a fully IP-based network is a major engineering challenge. Meeting it may take several decades; in fact, there is no consensus today that this will ever happen. Some portion of the voice services currently offered by the PSTN will certainly migrate to an IP-based technology. However, IP telephony and PSTN services will coexist for a considerable time.

For these reasons, the ability to interconnect IP telephony users to PSTN users is essential. This paper discusses the main aspects of interworking between IP telephony and PSTN voice services.

Two main standardization approaches are being carried out for IP/PSTN interworking. In the IP world driven by the Internet Engineering Task Force (IETF), interworking with the PSTN has been the result of a logical extension to the IP telephony service, which is

1 A modified version of this paper appeared in IEEE Communications Magazine, Vol. 35, No. 5, May 1999.
The PSTN/ISDN protocols and H.323 communication scenarios for IP/PSTN interworking. In the telecommunications world, the International Telecommunication Union/Telecommunication Standardization Sector (ITU-T) and the European Telecommunication Standards Institute (ETSI) are the main contributors in terms of standards and pre-standard documents.

The ITU-T has initiated various standardization activities (for example, see [11] [12] [13] [14] [15]) that captured the attention of most of the industrials involved in the field. Related to these standards, the ETSI project Telecommunications and Internet Protocol (TIPHON) undertook the effort to identify additional technical agreements required for the interoperability between IP networks and circuit switched networks [4]. Some industrial consortia such as the International Multimedia Teleconferencing Consortium (IMTC) through its Voice-over-IP (VoIP) group also provide recommendations related to the implementation interoperability that is required in a multivendor context [8].

In this paper, we analyze the main requirements for interworking between IP telephony and the PSTN services. Illustrations are based on the H.323 standard. For clarity, the interworking features are organized in three planes: the control plane, the user plane, and the management plane. Control plane interworking defines the set of signaling protocols to be used in each networking context and the translation between them. User plane interworking is responsible for adapting the voice data to the properties of each network channel and determining the Quality of Service of the voice call in terms of delay and speech quality. In the management plane, we present a brief overview of main management aspects in the context of hybrid voice services.

The paper is organized into sections as follows: “Voice Service Interworking” defines hybrid voice services and gives basic communication scenarios for IP/PSTN interworking. The PSTN/ISDN protocols and H.323 systems are briefly reviewed. The interworking features in the control plane are described in the section titled “Signaling and Control,” in which we discuss signaling adaptation, addressing, and media control functions. User plane interworking is discussed in “Media Adaptation Functions.” The impact of end systems and network design is analyzed in terms of speech quality and communication interactivity. In “Management Issues,” we discuss some aspects of the management plane and related open issues.

Voice Service Interworking

Interworking of IP and PSTN voice services can be considered as part of a much bigger effort undertaken by standardization bodies in the field of network and service interworking [3] [5] [23]. The most obvious interworking scenario between IP and the PSTN is when the PSTN connection is used as a lower data layer by the access part of an IP network (for example, dial-up access to an Internet service provider). We rather focus on service interworking, and more specifically on interworking of voice services. In the context of PSTN and IP telephony services, interworking is the ability to offer a broader service that results from their peer juxtaposition. For the remainder of the paper, voice services resulting from this interworking will be referred to as hybrid voice services. More concretely, hybrid voice services provide connectivity between users of both networks as well as between users of the same network given that part of the communication uses the service of the other network. Therefore, hybrid voice communications involve both PSTN and IP voice services and/or both types of terminals.

In this section, we describe five basic scenarios for voice communications. We consider voice services over the PSTN and the IP network, as well as hybrid combinations. Also, we provide a brief overview of the H.323 standard.

Five Scenarios for Voice Communications

Figure 1 on page 4 illustrates five basic voice communication scenarios. Hybrid voice services are represented by scenarios 3, 4, and 5. In these scenarios, an interworking function (IWF) is needed to perform all protocol
conversions and data adaptations. The IP and PSTN areas represent a protocol concept and do not necessarily involve a real network. Therefore, an IWF device may be used to connect two networks (i.e., a network adaptor) or a terminal to a network (i.e., a terminal adaptor).

For voice services, the IWF provides the following mechanisms:

• Signaling adaptation consists of the processing and translation of incoming signaling messages. It mainly concerns the call setup and clearing phases.

• Media control consists of identifying, processing, and translating service-specific control events that may be generated by the user or the terminal.

• Media adaptation consists of adapting the voice data to the data transfer channel of the downstream network.

The PSTN Voice Service

In scenario 1, two standard phone sets are connected via the PSTN. Although well known by the communications community, we briefly review the main PSTN characteristics that will be crucial to further discussion of interworking concepts.

The PSTN core network is based on a circuit switched network in which each circuit corresponds to a 64 Kbps digital channel. A PSTN terminal can be either digital or analog. Standard phone sets are attached to the PSTN by means of an analog access network, which merely corresponds to the set of subscriber loops (the copper wires that link the customers to the central office). On an analog access network, voice is transmitted as a 3 kHz wideband analog signal and is digitized at the access switch. In this case, signaling capabilities on the analog part of the access network (for example, address notification) are reduced to in-band coding of dual tone multifrequency (DTMF) tones.

ISDN allows voice terminals to have digital access to the PSTN. In this case, a digital voice terminal (or an analog terminal attached to an adaptor) initiates a signaling dialog using Q.931 (or the Digital Subscriber Signaling System No. 1, DSS1) to connect to the network via a 64 Kbps digital channel. Signaling inside the digital core network is based on the Signaling System No. 7 (SS7). An ISDN terminal seamlessly calls an analog PSTN terminal and vice versa. A unified addressing system is defined in ITU-T Recommendation E.164 [9].

Finally, one essential feature of the PSTN is its service creation and control capabilities referred to as intelligent network (IN) [17]. Basic services such as call forwarding rely on the IN architecture.

Voice Services over IP

Scenario 2 illustrates what is generally referred to as IP telephony. IP telephony follows the IP paradigm: all service-specific processing and

Figure 1. Voice Communication Scenarios
protocols, such as signaling and media coding, are pushed to the end systems and are transparent to the network. Applications can be built on top of the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), depending on whether they are loss-sensitive or time-sensitive respectively.

For example, the TCP transport protocol is used to carry the signaling stream since the signaling channel has to be error-free. However, because of its intrinsic timing constraint, voice traffic is usually transmitted over UDP. The time-continuous property of voice signals requires that the transport channel ensure the appropriate streaming needed for data resynchronizing at the receiver. For this reason, the Real-Time Protocol (RTP) is used. The sequence numbering field of RTP packet headers is used to reorder the receiving packets in case of out-of-sequence delivery (UDP does not ensure packet sequencing); the time-stamp field indicates the temporal playback position of the data payload. In addition, RTP allows the receiver to identify the media coding type (that is, which voice coding standard has been used at the coder side).

As far as end users are concerned, personal computers are the most common IP terminals. The processing and control parts of an IP telephony terminal are therefore usually implemented in software. However, a standard telephone set can also be connected to an IP telephony service by means of a network adapter that provides a minimal set of the required protocols. This has the advantage of having the potential to reach a much larger number of users than PC holders.

ITU-T Recommendation H.323 [11] and its related set of standards for packet-based multimedia communications [12] [13] [14] [15]—in addition to the several related efforts carried out by the ETSI, IETF, and the IMTC—certainly constitute the most advanced framework that covers essential IP telephony issues. Although it is not our goal to present a tutorial on H.323, a brief description of the standard is required for the following discussion on interworking. The presentation is restricted to the basic voice aspects of H.323; data and video communications and multipoint aspects are not covered.

H.323 Systems
The H.323 standard defines three types of equipment: gatekeepers, gateways, and terminals. The gatekeeper is an optional piece of equipment that provides call control services to the terminals. Examples of such services are address translation, admission control, call authorization, and directory services. The RAS (Registration, Admission, and Status) protocol defined in H.225.0 is used to communicate between a terminal and a gatekeeper.

The gateway is responsible for providing all translations necessary for transmission formats and control procedures between the IP supported portion and the PSTN/ISDN part of hybrid calls. As gateway functions are more related to hybrid calls than pure IP calls, they will be discussed in “Signaling and Control,” later in this paper.

The H.323 terminal components are described in Figure 2 on page 6. A terminal may support several standards for voice coding. The G.711 codec (used in ISDN) is, however, mandatory for all terminals. The H.225.0 recommendation specifies the use of logical channels based on the RTP/UDP/IP protocol stack to transfer coded voice data. The system control part of a terminal is composed of three protocols:

- The RAS signaling function is used for the dialog between a terminal and a gatekeeper. The associated channel, called the RAS channel, uses the UDP/IP protocol stack. A main function of the RAS channel is to allow the terminal to be attached to a gatekeeper by registering itself. Registration basically results in an update of the gatekeeper’s address translation table. This allows other terminals to locate the registered terminal and to determine its transport address in order to initiate a call-signaling channel.
- The call signaling between two H.323 terminals is based on Q.931 messages. The call-signaling channel uses a TCP/IP protocol stack. The call setup phase consists of sending a Setup message to the destination.
The setup phase is considered successful upon reception of the Connect message from the called terminal. The next phase is the establishment of the H.245 channel.

- The H.245 protocol defines end-to-end control messages used for capability negotiation (e.g., the supported codecs), opening and closing of logical channels, flow control messages, and so on. The H.245 control channel is a reliable channel based on TCP.

Figure 3 shows an example of a control protocol diagram between two H.323 terminals. A description of some of these messages is provided in “Addressing,” later in this paper. Finally, it should be noted that H.323 defines a Fast Connect method in order to alleviate the initiation phase in basic and simple calls. The H.245 dialog is then replaced by additional information elements in the Q.931 messages so that, upon reception of the Connect message, all needed voice channels are activated.

Hybrid Voice Services

In scenario 3, the two terminals involved in the call use different protocol stacks to communicate with their access networks. The protocol conversions occur at the networks’ boundaries. Two terminals, of different types in this case, communicate with each other to ensure an ad hoc voice service to the end users. Scenario 3 requires both the mapping of media and media control channels and the mapping between signaling protocols.

In scenarios 4 and 5, the same protocols are used at the interface of each terminal, but a different protocol is used between them. The protocol conversions in both directions take place (at least twice) at the boundaries of the traversed networks and the presence of another network in the middle should be transparent to end users. In these scenarios, both the mapping of media and media control channels and the mapping between signaling protocols are generally required. However, mapping between signaling protocols can be avoided in some configurations. In particular, when the IP network is used only as a backbone network (scenario 4), all PSTN/ISDN signaling information can be transferred transparently through the IP network.

The gateway is the equipment that generally hosts the interworking functions. However, in the H.323 standard, the gatekeeper may also be involved in some interworking functions such as address translation. In the
next sections, we will generically use “gateway” to describe the equipment in charge of all interworking functions. In addition, we will only consider the case where the PSTN/IP gateway is connected to the PSTN via an ISDN access. Interworking issues between ISDN networks and analog PSTN terminals are not covered in this paper.

Signaling and Control

In this section, we show how call connections are set up and how control commands are conveyed during a communication.

Signaling Adaptation Functions

If two different signaling protocols are used in the interconnected networks, then the IWF should translate the signaling messages in such a way that the end-to-end call can be completed. In the H.323 gateway, Q.931 is used in both the IP network and ISDN access. However, the Q.931 signaling channel between an IP terminal and the gateway is terminated at the gateway (that is, Q.931 messages are processed in the gateway and not simply forwarded). A peer Q.931 channel is then used to support the call control on the PSTN side. This is mainly due to the fact that H.323 has defined a particular use of Q.931 messages, so that there is not necessarily a perfect correspondence with the ISDN use of Q.931 [12] [13]. Figure 4a on page 8 shows the IWF protocol stacks in the control plane in scenario 3.

SS7 Interoperability

For historical reasons, IP/PSTN gateways are usually seen as administrative boundaries between a network provider (usually the operator) and a network customer (usually a company or Internet service provider). For this reason, they are connected to the network as terminals. However, the gateway can be connected as a network node to the PSTN, to have access to its SS7.

Consider, for example, the scenario depicted in Figure 5 on page 9. Two IP telephony-based call centers are shown; each is connected to the PSTN through gateways. The two call centers are combined to form a single virtual distributed call center; if all the agents in one call center are busy, calls are to be diverted to the other one. If the gateways do not have access to the SS7 network of the PSTN, then such a call diversion requires terminating the call at the first gateway, and re-initiating a call from the first gateway to the

Figure 3. Diagram of H.323 Control Protocols

second one. This would tie up two PSTN ports of the first gateway, use up two voice circuits in the PSTN, and potentially introduce a high delay due to the convoluted route that the voice signal follows.

On the other hand, if the first gateway has access to SS7, then it can simply divert the call to be directly terminated at the second gateway, thereby avoiding the above inefficiencies. In this way, the two call centers can seamlessly be joined to form a virtual call center, which can be called at a common phone number. In this case, the gateway needs to implement the N-ISUP (Narrowband ISDN User Part) protocol. Figure 4b shows the protocol stack needed for scenario 3 where the gateway connected to the PSTN is an ISDN node.

SS7 is central to the operation of the PSTN. Therefore, the telecommunications companies are very reluctant to expose their SS7 network to gateway owners. A more acceptable approach is to provide SS7 access to a signaling gateway, which would control one or more media gateways. The signaling gateway would then reside on the premises of the telecommunications company, and would communicate with the media gateways via a specific protocol. Work is in progress in IETF and ITU-T Study Group 16 to standardize such a protocol. Several candidate protocols exist, such as the Media Gateway Control Protocol (MGCP). Another proposal in consideration is to use the H.323 signaling protocols for this purpose.

Figure 4. The IWF in the Control Plane
Addressing

In the IP world, terminal addressing is generally based on alphanumerical streams whose resolution and directing are based on hierarchically organized servers [21]. Similar addressing schemes for IP telephony are provided by the Session Initiation Protocol (SIP) [7] defined by the IETF. However, as a requirement of service interworking between the PSTN and IP, each PSTN user should be able to call an IP attached user and vice versa. When the call is initiated from an IP terminal toward the PSTN, the E.164 destination address can be easily sent to the gateway and then across the PSTN. Such is the case in both H.323 and SIP. The problem is more complex when the caller is a PSTN terminal and the destination is an IP terminal. This is partly due to the limited dialing capabilities of standard telephone sets, particularly if only an alphanumerical type of addressing is defined for the destination.

A crucial question is whether the numerical expression of an IP address can be explicitly used in the identification of the IP terminal. An important requirement for service interworking is that the calling user should be oblivious of the network (PSTN or IP) to which the callee is attached. The ITU-T approach to this problem is to allow an H.323 terminal to be identified by several address aliases of different kinds, typically, an E.164 address and an e-mail–like address [11]. Such an approach generally requires specific address translation, resolution, and registration services, which in H.323 are typically performed by the gatekeeper.

Figure 6 on page 10 shows an example of a call control scenario with address resolution. A PSTN terminal initiates a call to an IP terminal using the E.164 address alias. The steps of this scenario are the following:

1. The IP terminal registers with the gatekeeper by giving a network address, aliases of the network address, and the transport address of its signaling channel (i.e., the TCP port number and IP address). Examples of network address aliases are user@host and an E.164 address. The terminal sends as many Registration Request messages as necessary to register all its address aliases.
2. The gateway registers with the gatekeeper in the same way.
3. The gateway receives a Setup message from the ISDN access switch. This message contains the E.164 address of the calling PSTN/ISDN terminal and the E.164 address of the called IP terminal.
4. The gateway sends back the Call Proceeding message to indicate that the call is being processed.
5. The gateway sends a Location Request message to the gatekeeper asking for the

![Figure 5. SS7 Interoperability: A Call Diversion Scenario](image)
channel signaling transport address of the called terminal; the E.164 address of the called party is provided in the message.

6. The gatekeeper sends back a Location Confirm message containing the required transport address.

7. The gateway asks for permission to set up the call by sending an Admission Request to the gatekeeper. Upon reception of the Admission Confirm message, the gateway is ready to start the Q.931 setup phase.

8. The gateway sends a Setup message on the signaling channel of the destination IP terminal.

9. If the terminal is alive, a Call Proceeding message is sent back.

10. The terminal asks for permission to set up the communication.

11. The terminal sends an Alert message to the gateway indicating that the called user is being alerted of the incoming call. This may correspond to the usual ringing signal.

12. The Alert message is forwarded to the ISDN part.

13. The terminal sends a Connect message to the gateway indicating that the call is accepted. The Connect message contains the transport address needed for the establishment of the H.245 channel.

14. The terminal and the gateway initiate the H.245 dialog for capability exchange and establishment of logical channels.

15. After the media channels are activated between the terminal and the gateway, the latter sends a Connect message to the ISDN calling party indicating that voice communication can start.

It should be noted that this diagram depicts a typical scenario, but there are shorter scenarios that use the Fast Connect procedure [11].

Media Control Functions

Once the connection is set up, the media control channel is used to carry all control information generated by the user or the terminal. For voice communications, the main type of user-level control information is the DTMF tones, which are used, for example, to interact with a voice server. Carrying these signals over a hybrid connection requires careful monitoring. The standard compression techniques used today for low bit-rates introduce enough distortion to corrupt DTMF analog tones, making the receiving end system unable to correctly decode the original signals. There-

Figure 6. Example of Call Control in a Hybrid Voice Communication
fore, DTMF tones need to be separated from
the audio signal at the sender (if it uses a clas-
sical terminal attached to an adaptor) or at the
gateway, and conveyed separately to the
receiver.

Two approaches have been recommended
by the VoIP Forum for carrying DTMF
information. The first is to carry them in-
band via RTP using a dedicated payload for-
mat. The advantage of this approach is that
the tones remain temporally synchronized
with the speech. However, packet delivery is
not guaranteed because of the unreliability of
the UDP transport protocol. Although packet
loss can be kept very low in well-engineered
networks and has negligible impact on voice
quality, the loss of a DTMF tone can result in
severe service malfunctions at the user level.
The second solution uses out-of-band trans-
port of DTMF signals on a separate and reli-
able media control channel. The drawback of
this approach is that the signals lose their
exact temporal position in the voice stream.
This latter approach has been recommended
for H.323 systems—that is, those using the
H.245 channel. The protocol stack for the
media control interworking function is shown
in Figure 7.

Media Adaptation Functions
The major user plane issue is maintenance of
the Quality of Service (QoS) required for
voice connections. Instead of worrying about
the quality of the transmitted bits, we focus
on the quality of information delivered to the
end user. Two main factors may influence the
QoS experienced by the end user:
• The end-to-end speech quality, which may
be affected by both the successive encod-
ing/transcoding operations and the packet
loss due to network congestion.
• The end-to-end delay, which mainly impacts
the interaction between the participants of a
conversation. It results from the coding/
decoding process, packetization, and queu-
ing delays.

On the IP network side, the service
provider tries to accommodate a maximum
number of voice connections at a time. There-
fore, a key question arises: what are the appro-
priate mechanisms to be employed within
both the end systems (including the gateways)
and the network in order to optimize network
utilization while maintaining the desired QoS
for the end users?

In this section, we first give a brief
description of the techniques that are being
implemented in IP networks to provide a
certain service guarantee. Then we analyze
how the end systems may influence the user-
oriented QoS. We focus on the trade-offs
among bandwidth, delay, and computational
complexity.

QoS- and IP-Based Networks
While the PSTN network ensures a fixed
delay and no-loss guaranteed service, this is
not necessarily the case for IP-based networks.
Indeed, services currently experienced on the Internet are best-effort services. They are characterized by the absence of any QoS specification at all. However, IP telephony applications will definitely need some kind of quality guarantees in terms of absolute delay, delay jitter, and packet loss.

The Integrated Services (IntServ) architecture was designed to provide a set of extensions to the best-effort traffic delivery model. For this purpose, it defines two classes: guaranteed service and controlled load service [1].

- Guaranteed service (GS) provides a lossless transfer with tight delay bounds for flows that conform to the parameters negotiated at the connection setup.
- Controlled load service (CLS) yields a quality corresponding to a lightly loaded IP network at best-effort; it is not expressed quantitatively. The admission control is based on the peak rate declared by a session initiator and on measurements of the load in the network. This could lead to a higher network efficiency compared to admission control based only on declared source descriptors.

Both GS and CLS connections can be established by Resource Reservation Protocol (RSVP) signaling [27]. However, RSVP has some weaknesses that considerably undermine its wide deployment, mainly due to the soft-state reservations paradigm and the exponential growth of the reservation state tables.

In order to get around the weaknesses of the solutions proposed by the IntServ group, a new group, called the Differentiated Services (DiffServ) group, was formed. The DiffServ group suggested that instead of maintaining the state of each and every flow, why not discriminate the packets according to their precedence? The precedence of a packet is indicated by the three first bits of the IP Type of Service field. This idea led to the concept of differentiated services, which also has the advantage of being "easily" implementable in existing networks.

As previously mentioned, the objective of a service provider is to increase the network efficiency (reduce service cost) by accommodating as many voice connections as possible. This leads to higher packet loss ratios and delays. The sensitivity of IP voice services to data loss strongly depends on the mechanisms implemented in the end systems.

QoS and End Systems

The heterogeneity of networks causes voice traffic to be handled differently. Indeed, in the PSTN, voice connections generally operate at the standard rate of 64 Kbps (pulse code modulated, PCM, signal, or G.711). However, there is no need to keep such a high bandwidth connection within the IP network. Rates ranging from 5.3 Kbps (i.e., G.723.1) to 8 Kbps (i.e., G.729) will usually be more appropriate. The transcoding (PSTN to IP network) process occurs in the gateways (Figure 8). However, a lower bit rate will generally involve a lower signal quality and higher delays.

![Figure 8. The IWF in the User Plane](image-url)
Indeed, while both the G.729 and G.711 coding standards provide a voice quality comparable to the usual telephone service quality (toll quality), an encoder based on the G.723.1 standard outputs a quality lower than toll quality. The introduced delay results from both a higher processing delay and an increasing packetization delay. The processing delay is the delay required to run the encoding algorithm on the uncompressed voice signal and to create a stream of bytes ready to be sent to the packetization layer. The packetization delay represents the time needed to form a packet of compressed voice information of a given size. Therefore, when decreasing the encoding bit rate, the service provider can accommodate more voice connections at the expense of increasing signal distortion and delay.

As stated earlier, the RTP/UDP/IP protocol stack is used for the delivery of delay- and loss-sensitive services over packet networks.

In such a scenario, every single packet contains 40 bytes of pure header information (assuming no header compression technique is used). There is thus an inherent trade-off between packetization delay and payload-to-header ratio (channel utilization): the higher the payload-to-header ratio, the higher the packetization delay for a given encoding standard. For example, if the G.723.1 standard is used, 60 ms are necessary to collect 40 bytes of voice information; this corresponds to a 50 percent channel utilization. Figure 9 illustrates the evolution of packetization delay versus network utilization. However, packetization delay can be dramatically reduced by multiplexing several voice connections in the same IP packet. A recent Internet draft [25] proposes to perform this multiplexing at the RTP layer (such as gateway-to-gateway communication in scenario 4).

The combination of processing, packetization, and queuing delays forms the end-to-end delay perceived by the end user. An increasing end-to-end delay may lead to a better service implementation from the service provider viewpoint. However, this end-to-end delay, if strictly lower than 400 ms, should not
affect the interaction between the participants in a conversation. Delays up to 150 ms require echo control but do not compromise the effective interaction between the users.

Equivalently, the distortion introduced by both the successive encoding/transcoding processes and data loss due to network congestion affect the end-to-end speech quality. This quality must be equal or close to toll quality. Mechanisms such as error correction and error masking techniques should be used in order to tolerate higher data loss while providing the same service quality. For example, G.723.1 interpolates a lost portion of the voice signal by simulating the vocal characteristics of the previous portion and slowly damping the signal [20]. The efficiency of an error masking scheme decreases when the number of packets lost at a time increases. Also, forward error correction (FEC) schemes have been proposed to alleviate loss bursts of a small number of packets. An RTP payload type for streams with FEC is being defined by the IETF. It should be noted that FEC introduces some predictable delay.

Although the relationship between all the factors influencing the service quality and network efficiency is intrinsically complex, it is the key to implementing an optimal voice service over IP networks.

Management Issues
The management plane generally covers different layers such as device, system, and service management. A complete management framework for hybrid services is not yet defined because of the different IETF and ITU-T management approaches. Instead, we discuss here some important management features and related open issues.

Service Creation
The ITU-T has defined recommendation H.450.1 specifying how new services (called supplementary services) can be added to H.323 systems. Two supplementary services are already defined in H.450.2 (Call Transfer) and in H.450.3 (Call Diversion), and a few others are still under study. The main advantage of standardizing the supplementary services is to ensure their interoperability across different service providers.

IP telephony clearly offers a much more flexible and open environment for service creation because it relies more on software-based and intelligent end systems than on network nodes. An important issue in voice service management is the development of powerful service creation environments as well as protocols and application programming interfaces (APIs) for uploading these new services in the terminals. Presumably, an approach similar to the intelligent network, but more open and flexible, is needed for hybrid service management. A Java-based approach has already been proposed for this purpose [6].

OAM-Like Features
Up to now, most of the effort spent to achieve IP and PSTN service interworking was focused on the control and user planes. Management plane interworking is still an open issue. It is, however, a determinant aspect for the long-term viability of hybrid voice services, especially for operators that are introducing the IP technology in their core or access networks. This is because global and unified management operations (such as performance monitoring and failure detection) are necessary to ensure seamless service quality for end users. For ITU-T standardized networks (ISDN, BISDN, Frame Relay), these management aspects are referred to as operations administration and monitoring (OAM). Examples of OAM features are detection of failures and defects, loopback activation and performance measurements. It is then essential to define and standardize such procedures for IP telephony as well. In particular, for the H.323 standard, some tools that can perform OAM-like features are the following:

- The exchange of the RAS messages Information Request (IRQ) and Information Request Response (IRR) between the gatekeeper and terminals provides a way to detect failures in H.323 equipment.
- The H.245 message Round Trip Delay Request allows an end-point to measure the communication delay in real time. This
information can be used for various management decisions.

- The H.245 message Maintenance Loop Request allows an end-point to set up a connection in loopback mode with another end-point. This procedure can be used for remotely testing the connection availability.

However, more work remains to be done to provide a unified OAM approach for managing a hybrid IP/PSTN platform.

Network and System Management

The philosophy of network and service management is very different in the PSTN than in the Internet. The telecommunications community has defined and to a large extent implemented an architecture called the Telecommunications Management Network (TMN) [16]. It is a heavyweight solution in which the various network components are represented in a sophisticated object-oriented model. In this architecture, five functional areas are identified: fault, configuration, alarms, performance, and security.

For IP telephony systems, ITU-T Study Group 16 is working on the definition of several management information bases (MIBs) for the various H.323 components (for example, see [19] for the gatekeeper's MIB). It is not clear how the TMN functional areas will interface with the SNMP-based management of the Internet for the successful provision of hybrid voice services.

Policy Management

From a service management viewpoint, the SNMP-based approach for device-level management has limitations. For example, it is difficult for a network manager to map the desired network behavior into individual device configuration parameters, especially considering that the desired behavior may depend upon many dynamic factors such as traffic conditions, time of day, date, and network topology. Furthermore, device-level management allows only very limited possibilities for altering network behavior based on the sender or receiver of information.

In order to overcome these limitations, the networking community has been working on policy management, which can be considered as a level of abstraction above device management. Policy management allows network managers to specify device-independent policies that describe the network behavior in terms of security, quality of service, accounting/charging, and so on. Such policies are stored in policy servers and downloaded to individual devices as required. Therefore, a protocol is required to communicate between network devices and policy servers. The IETF-defined Common Open Policy Service (COPS) protocol* can be used for such purposes.

By using the RAS protocol, the H.323 devices request from the gatekeeper various services such as zone registration, call admission control, address translation, etc. The current gatekeeper implementations make these decisions locally, without taking network conditions into consideration. However, a policy-aware gatekeeper would consult the policy server for making its decisions. This provides great flexibility for policy implementation, which would no longer be limited by gatekeeper capabilities. Therefore, the gatekeeper would be the natural front end to the policy server for the H.323 systems.

The policy management concept is still in its infancy, and many of its components are yet to be developed and standardized. The efforts for standardization are being carried out by bodies such as the Desktop Management Task Force (DMTF) and the IETF [2].

Security

Security in voice communications is gaining interest for both the PSTN and IP telephony. User/terminal authentication as well as communication privacy are the most frequently required security features. A number of devices are commercialized today to secure telephone and fax communications on the PSTN. On the side of IP networks, many proposals have been implemented at the network, transport, and application levels. Concerning H.323 systems, a security framework has been

* While COPS was originally defined for RSVP policies, it is applicable to other types of policies as well.
defined in recommendation H.235. However, security protocols and algorithms have not yet been standardized.

Security mechanisms are usually negotiated between the two end-points of the communication; however, in hybrid voice services, voice channels as well as signaling channels are also terminated at the gateway. How this “third-party” will be involved in the authentication procedure is still an open question. This raises the issue of key management in a hybrid environment, a problem that seems to have been overlooked so far by the research community.

Dependence on the Regulatory Framework
For historic and strategic reasons, the telecommunications regulatory bodies have devoted a lot of attention to voice service. Even if today voice services are being liberalized in most countries, the way they are billed is still under strong political monitoring. Therefore, how profitable the business of IP telephony can be will also depend on legislative decisions in the years to come.

In spite of these open questions, the migration of voice services from the PSTN to IP networks is absolutely crucial. Even if data bits are becoming more numerous than voice bits, voice still represents more than 70 percent of the revenue of the communication industry. A wealth of advanced multimedia services can be envisaged on this basis.

Conclusion
In this paper, we have provided an overview of the technical issues involved in the provision of voice services over hybrid PSTN and IP networks. It is difficult to predict the pace at which this new technology will be accepted because of the following open issues:

• Complexity. The provisioning of voice services over the conventional PSTN is already extremely complex and has led to highly sophisticated switches running programs of millions of source code lines. In the five communication scenarios discussed in this paper, the complexity resulting from combining voice services could suddenly increase by a factor of five. It would be too optimistic to believe that this problem is solved by the Internet paradigm of intelligence at the edge. Indeed, as we have seen, many functions must be implemented in the gateways and gatekeepers, which are centralized network devices. Even if communications are established (and billed) properly for the five basic scenarios, this will not necessarily be the case in more complex configurations, such as when a user wants to establish a call from a conventional phone to an IP terminal that happens to have its calls forwarded to a cellular phone.

• Quality of service. As we have seen, in a hybrid call user data must go through a number of transcoding operations. It has not been proven that the user-perceived quality of service will be acceptable in a widely deployed hybrid service. Moreover, if at least one of the terminals happens to be mobile, the combination of the wireless problems with packetization delays and degradation due to transcoding can be a considerable challenge.

• Ease of use. It is clear that users appreciate the ease of use of universal communication systems such as the telephone and e-mail, notably because of the simplicity of the addressing. However, in the case of hybrid voice services, this simplicity will disappear. End users will be in some way aware of the existence of intermediate devices (gateway, gatekeeper). Proposed mechanisms to shield users from these issues by the use of aliases can be highly vulnerable to such conditions as changes in telephone or Internet service providers.

Acknowledgment
The authors would like to thank Daniela Bourges Waldegg and Constant Gbaguidi for their helpful comments.
References

About 3Com Corporation

With over 300 million customer connections worldwide, 3Com Corporation connects more people and organizations to information and each other in more innovative, simple and reliable ways than any other networking company. 3Com delivers e-Networking solutions through information access products and network systems to enterprises, small businesses, consumers, carriers and network service providers.