
LION: Layered Overlay Multicast with Network Coding

Jin Zhao*1, Fan Yang2, Qian Zhang2, Zhensheng Zhang3, Fuyan Zhang1

1Dept. of Computer Science, Nanjing University, Nanjing, China
2Microsoft Research Asia, Beijing, China

3San Diego Research Center, San Diego, CA, USA

Abstract

Recent advances in information theory show that the throughput of a multicast session can be improved

using network coding. In overlay networks, the available bandwidth between sender and different receivers

are different. In this paper, we propose a solution to improve the throughput of an overlay multicast ses-

sion with heterogeneous receivers by organizing the receivers into layered data distribution meshes and

sending substreams to each mesh using layered coding. Our solutions utilize alternative paths and network

coding in each mesh. We first formulate the problem into a mathematical programming, whose optimal

solution requires global information. We therefore present a distributed heuristic algorithm. The heuristic

progressively organizes the receivers into layered meshes. Each receiver can subscribe to a proper number

of meshes to maximize its throughput by fully utilizing its available bandwidth. The benefits of organizing

the topology into layered mesh and using network coding are demonstrated through extensive simulations.

Numerical results indicate that the average throughput of a multicast session is significantly improved (up

to 50% to 60%).

Keywords

Overlay multicast, network coding, heterogeneity

1. INTRODUCTION

Recently, overlay multicast, or end system multicast, has received many research interests [1-4]. Instead of

relying on the IP multicast support in routers, an end host can act as “router” to forward data to other end

hosts.

The challenge to improve multicast throughput lies in the observation that the available bandwidth between

end hosts are heterogeneous. A measurement study in peer-to-peer overlay networks [16] reveals that the

bottleneck bandwidth between the end hosts exhibits extremely heterogeneity. To handle heterogeneity,

layered multicast is proposed in IP multicast [13] and overlay multicast [14], respectively. The basic idea is

to encode source data into several layers. Thus a receiver can subscribe to a proper number of layers to

maximize the throughput.

 *Work performed when Jin was a visiting student at Microsoft Research Asia.

A significant amount of research efforts has been directed toward overlay multicast throughput improve-

ment. Existing works can be roughly classified into single-path and multi-path schemes. Many of the exist-

ing works have advocated building single data distribution tree rooted at sender. Therefore each receiver

has only one path from the sender along the tree. Narada [1], which constructs a spanning tree for data de-

livery on the initial mesh structure, is a typical single-path scheme. Recent Internet measurement [17] shows

the redundant IP routes between hosts are quite common. Study in overlay networks [18] also demonstrates

that a better path other than the default one may exist. The throughput attained by single multicast tree is

therefore suboptimal and can be improved.

Multi-path schemes construct multiple paths between sender and each receiver and use multi-stream coding

or erasure coding to address heterogeneity. Both CoopNet [2] and SplitStream [3] build multiple trees

among overlay nodes and send data to each tree using multiple description coding. Each receiver has multi-

ple paths from sender along different trees. More recently, oEvolve [4] is proposed to improve the re-

ceiver’s throughput by measuring each receiver’s available bandwidth periodically. The scheme dynami-

cally adds new trees spanning the receivers which have residual bandwidth. Receivers with residual avail-

able bandwidth can improve throughput by joining more trees.

The schemes mentioned above assume that all the nodes in overlay network are receivers. Recent advances

in network coding [5] showed that with the presence of relay nodes, the multicast throughput can be further

improved by allowing coding operation at intermediate nodes in the network. Notably, Zhu et al. [8] apply

network coding to overlay network to improve throughput. By constructing a 2-reduandant multicast graph,

each receiver has two disjoint paths from the sender. However, the scheme needs to synchronize the rate of

each receiver’s two paths to be exactly same. In addition, the rates in all the paths that share some common

links also have to be synchronized to the rate in the bottleneck link. Furthermore, they do not address the

heterogeneity issue. Chou et al. proposed a practical network coding scheme [12]. In their work, each node

randomly codes the incoming packets and floods them to all the neighbors. They also utilize the Priority

Encoding Transmission (PET) technique to provide loss protection at the expense of introducing redun-

dancy. However, flooding packets among nodes will generate much unnecessary data that results in per-

formance degradation.

In this paper, we propose LION, a layered overlay multicast framework with network coding to address

end system heterogeneity. As in layered IP multicast, we assume the sender can provide layered data at dif-

ferent rates. We seek to improve the multicast session throughput by organizing the heterogeneous receivers

into layered meshes and using network coding in each mesh. We first formulate the problem using mathe-

matical programming. As obtaining an optimal solution requires global information, we also propose a dis-

tributed heuristic algorithm to approximate the optimal solution. Unlike earlier works which build single or

multiple data distribution trees, LION fully leverages multi-path property in a network and builds multiple

data distribution meshes. A receiver subscribes to a proper number of meshes to maximally utilize its avail-

able bandwidth. A source data layer is sent to a corresponding mesh. In each mesh, a receiver has multiple

paths to receive the source data. This uniqueness in data distribution mesh distinguishes LION from existing

works in layered multicast. The challenge in constructing layered mesh lies in how to build lower layer

meshes to maximally utilize the advantage of network coding and to leave more residual bandwidth for

higher layer meshes. Existing mesh construction methods can not be directly applied to the layered overlay

multicast to achieve the above goal. In this paper we propose a path-overlapping method that takes advan-

tage of network coding to address the problem. Simulation results show that the proposed heuristic of lay-

ered overlay multicast handles heterogeneity very well and improves multicast session’s throughput up to

50% to 60%.

The rest of this paper is organized as follows. Section 2 gives some insights of the motivation in layered

multicast with network coding. Section 3 formulates the problem and presents a distributed heuristic ap-

proach to solve the resultant mathematical programming. In section 4, we extend the heuristic approach to

overlay multicast. In section 5, we evaluate our heuristic through simulations which show that our heuristic

is quite encouraging. We conclude this paper in section 6.

2. BACKGROUND AND MOTIVATION

The maximal achievable throughput of a multicast session has been considered as a fundamental problem

for many years in graph theory. Menger [19] proved that the maximal unicast capacity from a sender to a

receiver equals the minimum cut capacity, or min-cut, separating the sender from the receiver. A cut of a

graph is an edge set which partitions the graph into two parts. The capacity of a cut is the sum of edge ca-

pacities in the cut. Furthermore, Ford and Fulkerson [20] developed an efficient algorithm to find the min-

cut. When all nodes in the network are receivers (except the sender), Edmonds [21] proved that the maximal

broadcast capacity is the minimal min-cut among all receivers. However, when there exist Steiner nodes,

which are not multicast receivers and only act as data relay, finding the maximal multicast capacity is NP-

hard [22] [23]. In their seminal work, Ahlswede et al. [5] proved that by means of network coding, the mini-

mal min-cut of a multicast session is also achievable even if there are Steiner nodes. Ideally, a sender can

multicast to all receivers at the rate of minimal min-cut among the receivers. Li et al. [6] and Koetter et al.

 [7] further proved that linear network coding is enough to achieve the capacity. Consider the network in Fig.

1(b). Node S encodes the data (a1+b1) and sends to R3. Both receiver T2 and T3 can receive a1, b1 from

sender simultaneously. Operation “+” refers to operation over Galois Field.

With network coding the throughput of single-rate multicast can achieve the minimal min-cut of all receiv-

ers. However, when the receivers are heterogeneous, single-rate multicast for all receivers is not efficient. In

case of multi-rate multicast, network coding alone may be not enough. Adding layers to receivers with

higher min-cut may further improve the throughput. In this paper we seek to maximize the throughput of a

multicast session with heterogeneous receivers. The problem can be regarded as multi-rate multicast using

network coding.

Fig.1 An example of adding layers to multicast session.

We use an example in Fig. 1 to illustrate our conjecture. Consider the network in Fig 1 (a) with S as the

sender, T1,T2, T3 as receivers and R1,R2,R3 as Steiner nodes, i.e., relays. The number on each link is the

link’s available bandwidth. Suppose we have encoded the source data into 3 layers. We further encode each

layer into small-grained stripes. Each stripe has unit bit-rate. Layer 1’s stripes are (a1,b1), layer 2’s stripes

are (a2,b2) and layer 3’s stripes are (a3,b3). Therefore each layer has 2 unit bit rate. T1 has min-cut 2, T2

has min-cut 4, T3 has min-cut 6 from sender, respectively. With single-rate multicast, the maximal through-

put is 2. T2 and T3’s available bandwidth can not be fully utilized. If we properly organize the receivers

into layers, T2 and T3’s throughput can be further improved. Layer 1’s data distribution mesh is illustrated

in Fig 1 (b). With network coding, T1, T2 and T3 all can receive layer 1’s content. The residual bandwidth

after removing layer 1’s bandwidth is shown in Fig 1(c). Both T2 and T3 have residual bandwidth and

therefore can join layer 2. Only T3 can join layer 3. The data distribution meshes of each layer are shown in

Fig. 1 (b), (d), and (f), respectively. Receivers T2 and T3’s throughputs are improved by joining additional

higher meshes. Here whether a receiver can join another higher layer depends on how the current layer is

constructed. For example, after constructing layer 1 (Fig. 1(b)), if layer 2 is constructed as in Fig 1. (g), then

the remaining bandwidth is not enough to construct layer 3 as shown in Fig 1(h).

Therefore, when we construct lower layers, while we first need to select enough paths for each receiver, we

shall also need to leave as much residual bandwidth as possible for higher layers. An intuition is that we

need encourage the paths for different receivers overlap. The overlapped links can serve more receivers

simultaneously using network coding (Fig. 1(b)). In Fig 1(g) the paths for receiver T2 and T3 overlap only

once at link S-R3. However, the paths for T2 and T3 overlap twice at link S-R3 in Fig. 1 (d) and (f).

In next section, we formulate the problem into a mathematical programming based on these observations.

3. PROBLEM FORMULATION

3.1. Notations

Suppose the source data are encoded into L layers },...,,{ 21 Llll . Layer i has bit-rate Bi. Layer i can be de-

coded only when layer 1 to layer i-1 are all available.

We model the network as a directed graph G (V, E) where V is the set of nodes and E is the set of edges.

There are 3 disjoint node sets in V, namely, S, R and T, which denote sender, relays and receivers, respec-

tively. |S|=1, |R|=NR, |T|=NT, TRSV UU= , },,,{ 21 TNtttT K= . Suppose there are total M edges in the net-

work, },,,{ 21 MeeeE K= , |E|=M. The available bandwidth of edge em is Cm. A multicast session is identi-

fied by a tuple (S, T). Receivers with different available bandwidth from S can receive different number of

layers.

We denote each receiver’s layer subscription as matrix Z.

≤≤≤≤= LkNi
otherwise

klayer receive canireceiver
z Tik 1,1

,0

,1
, ， . (1)

Suppose receiver ti has Ni possible paths from the sender, the set of these paths is denoted by

)},(,),2,(),1,({)(iiiii NtPtPtPtPath K= . (2)

As a path consists of consecutive edges, matrix X(ti) is used to denote the edges which are included in ti’s

paths.

iT
im

imj NjMmNi
otherwise

jtPeif
tx ≤≤≤≤≤≤

 ∈

= 1,1,1,
,0

),(,1
)(,

. (3)

Note that the elements in matrix X are constants. They are determined once all the paths from sender to re-

ceivers in the directed graph G(V, E) are specified.

We use matrix Y(ti) to denote the assigned flow rate on ti’s paths in all layers. Element yk,j(ti) in Y(ti) denotes

receiver ti’s flow rate of path j in layer k.

iijk NjLkty ≤≤≤≤≥ 1,1,0)(, (4)

We use matrix U to denote the consumed bandwidth on all edges in all the layers. An element uk,m of U de-

notes the consumed bandwidth of edge m in layer k.

MmKku mk ≤≤≤≤≥ 1,1,0, (5)

Note that U defines the data distribution meshes for all the layers.

3.2. Multi-layer Formulation

Our objective is to maximize the multicast session’s throughput. In our setup, it is to maximize the total bit-

rate of all receivers’ subscription. Each receiver joins layers in an incremental order. Before receiver ti joins

layer k, it needs to join all the lower layers (1 to k-1) first. If ti’s paths have additional available bandwidth

that can support Bk, it can join layer k. Network coding guarantees that all receivers which joined layer k

can have bit-rate Bk since each receiver in layer k has available bandwidth Bk from the sender [5]. The data

of layer k are distributed in a mesh rather than a tree since each receiver may have multiple paths from the

sender. Here we specify that network coding is only allowed within the same layer. Though it is possible to

code the data from different layers, combining data belonging to different layers makes it difficult to re-

cover all original data for receivers that only receive partial layers.

The problem can now be formulated as the following mathematical programming.

∑∑
= =

⋅
TN

i

L

k
ikk zB

1 1
,Maximize (6)

Subject to:

1) LkNizBty Tikk

N

j
ijk

i

≤≤≤≤⋅=∑
=

1,1,)(,
1

,

2)
Tikik NiLkzz ≤≤−≤≤≥ + 1,11,,1,

3) [] LkMmtytxu
i

T

N

j
ijkimj

Ni
mk ≤≤≤≤

⋅= ∑
=≤≤

1,1,)()(max
1

,,
1

,

4) MmCu
L

k
mmk ≤≤≤∑

=

1,
1

,

Constraints 1) ensure that receiver ti must assign total Bk bandwidth on all its paths for layer k if zk,i=1. Con-

straints 2) ensure that each receiver subscribes to layers in an incremental order, layer k+1 is not decodable

without any layer less than k+1. Constraints 3) specify the required flow rate on each edge for each layer.

Receiver ti’s bandwidth consumption for layer k on edge m is the sum of the specified layer-k flow rate on

ti’s all paths which pass edge m. With network coding, different receivers will not compete for edge band-

width within one layer, therefore the required flow rate on edge m for layer k is equal to the largest band-

width on edge m consumed among all the receivers in layer k. Constraints 4) ensure that an edge can support

all the flows on all layers. Matrix U forms the data distribution meshes. U’s column k denotes the mesh for

layer k.

When we consider heterogeneous receivers, fairness should be also considered. There may exist cases

where one receiver’s throughput is maximized at the cost of other receivers’ starvation. We introduce a

weight value, wk, on layer k, (k=1, .., L) to ensure certain fairness that the available bandwidths are allocated

to receivers which subscribe to lower layers first. Recall that NT denotes the number of receivers. To ensure

fairness, the weight value of each layer should satisfy:

LkwNw
L

ki
iTk ≤≤−> ∑

+=

1,)1(
1

 (7)

Suppose layer L (i.e., highest layer) has the lowest weight 1, we determine the value of weight recursively.

kL
Tk Nw −=)((8)

Note that other values of wk can be used as well.

Then the objective in (6) can be rewritten as

∑∑
= =

⋅
TN

i

L

k
ikk zw

1 1
,Maximize , (9)

to ensure fairness.

The above formulation considers all receivers and all layers simultaneously. Therefore it can achieve opti-

mal value. However, the problem is a nonlinear optimization (NLP), which is hard to solve. By changing the

form of max function in constraints 3), we can transform the problem into a linear one as defined in (10).

∑∑
= =

⋅
TN

i

L

k
ikk zw

1 1
,Maximize (10)

Subject to:

1) LkNizBty Tikk

N

j
ijk

i

≤≤≤≤⋅=∑
=

1,1,)(,
1

,

2) Tikik NiLkzz ≤≤−≤≤≥ + 1,11,,1,

3) Tmk

N

j
ijkimj NiLkMmutytx

i

≤≤≤≤≤≤≤⋅∑
=

1,1,1,))()((,
1

,,

4) MmCu
L

k
mmk ≤≤≤∑

=

1,
1

,

As we can see in constraints 3) in (10), the max function is transformed into NT-1 more inequations. The

problem now becomes an integer linear programming (ILP). We refer to the problem as m-Layer problem.

Though linear, the problem requires global information on all receivers and all layers to get the optimal

value, which is not practical for overlay multicast.

3.3. Layer Decomposition

As m-Layer problem is computationally intractable, to reduce computation complexity, we decompose the

problem into multiple one-layer problems, i.e., solve the optimization problem within each layer in isolation.

In this case constraints 2) disappear and constraints 4) can be merged into constraints 3), the optimization

problem in layer k can be formulated as:

Tm

N

j
ijkimj

Tikk

N

j
ijk

N

i
ikk

NiMmCtytx

NizBty

zw

i

i

T

≤≤≤≤≤⋅

≤≤⋅=

⋅

∑

∑

∑

=

=

=

1,1,))()(()2

1,)(1)

:subject to

Maximize

1
,,

,
1

,

1
,

 (11)

Note that (11) is also an ILP. We construct the mesh for each layer iteratively to ensure more receivers join

lower layer first. We first solve the problem in (11) by letting k=1, i.e., let receivers first join layer 1. After

the flows are assigned on each edge in layer 1, we update the available bandwidth on all the edges. Edge

with no available bandwidth will be removed. The paths containing these removed edges will be deleted too.

We also remove the receivers which can not receive layer 1 if any. Then we solve the resultant ILP (for k=2)

again and obtain a mesh for layer 2. We iteratively use the approximation until there are no receivers in the

residual graph. As each receiver adds layers in an incremental order, adding higher layer not only does not

cause lower layer’s quality decrease but also increases throughput for receivers with available bandwidth,

therefore fairness is satisfied.

However, there may be multiple solutions to each ILP. Among those multiple solutions, we choose the one

with minimal consumed edge bandwidth, which will maximize the available bandwidth as well as the con-

nectivity in the residual network. More formally, suppose we have N possible solutions to (11) for layer k,

we choose the j0th solution, where j0 is given by:

= ∑

=≤≤

M

m
mk

Nj
juj

1
,

1
0)(minarg . (12)

Recall that uk,m(j) is the consumed bandwidth of edge m in layer k in the jth solution (among the N solutions)

to (11).

We refer to the decomposed ILP as 1-Layer problem. The 1-Layer problem still needs to consider all re-

ceivers simultaneously such that the consumed edge bandwidth is minimal. In the remaining of the paper,

we describe distributed heuristics to obtain the solutions.

3.4. Heuristic Approach

As stated in the previous section, to obtain the optimal solution even within one layer we still need to coor-

dinate all receivers, which is still not practical. Therefore we propose a heuristic algorithm which can be

implemented in a distributed manner to approximate the optimal solution. The heuristic not only considers

each layer in isolation, but also considers each receiver in isolation. The receivers join layers in an incre-

mental order. The basic idea of the heuristic is to encourage overlapping among the paths of different re-

ceivers. During the construction of data distribution mesh for a layer, each receiver selects paths independ-

ently but tries to select as many paths as possible such that the probability of overlapping with other re-

ceiver’s paths is high so that the network coding can be applied.

Each receiver ti first runs the Ford-Fulkerson algorithm [20] to find the maxflow (maximum achievable flow

rate) from the sender as well as the flow rate on the paths to achieve the maxflow. We denote the obtained

path set as maxflow paths MFP(ti). Suppose there are total NP(ti) paths in ti’s maxflow paths. The flow rate

assigned to path j should be MFj(ti) in order to achieve the maxflow. Assume that layer k’s bit-rate is Bk. The

receivers with maxflow larger than or equal to Bk will join layer k. The basic idea of our heuristic in con-

structing data distribution mesh for layer k is that it tries to evenly assign the flow of layer k on all the max-

flow paths. In this way, the probability that a receiver’s data paths overlap with other receivers’ paths can be

maximized. Therefore each path in MFP(ti) can approximately carry Bk/NP(ti) flow. However, paths with

MFj(ti) less than Bk/NP(ti) may carry less flows while paths with MFj(ti) larger than Bk/NP(ti) will be allocated

more flows. Suppose path j is assigned with yj(ti) flow rate. The pseudo-code of flow rate assignment in a

layer is summarized in Fig. 2.

Fig. 2. Pseudo-code for flow rate assignment in layer k

The calculation of the required flow rate on each edge em is similar to the constraints 3) in equation (6).

Each receiver’s assignment on an edge is the sum of the assigned flow of its all paths which pass the edge.

Suppose receiver ti (1≤i≤NT) assigned a flow rate of edgeflowk,m(ti) edge m (1≤m≤M) for layer k.

if ∑=
<)(

1
)(iP tN

j kij BtMF /* maxflow paths can not afford layer k */

stop adding layer k and the algorithm terminates
else
{

for each path j in MFP(ti)
yj(ti)=0;

ResidualPath(ti)=MFP(ti); /*ResidualPath(ti) denotes the paths with
MFj(ti)>0 */

while ∑ =
<)(

1
)(iP tN

j kij Bty

{
pathnum=|ResidualPath(ti)|;
minflow= min{MFj(ti)} in ResidualPath(ti);

∑ =
−=)(

1

iP tN

j jk yBunassigned /*unassigned flow */

 if (minflow*pathnum>=unassigned) /*flow increment in this round */
pathnumunassingedincrement /=

 else
increment=minflow;

for each path j in ResidualPath(ti)
{

yj(ti)=yj(ti)+increment;
MFj(ti)=MFj(ti)- increment;
if (MFi(ti)<=0)

Remove path j from ResidualPath(ti);
}

}
}

The required flow rate on edge m for layer k is

)}({max ,
1

, imk
Ni

mk tedgeflowu
T≤≤

= . (13)

The edges with required flows form the data distribution mesh for layer k. After layer k is constructed, each

receiver updates the available bandwidth of the maxflow paths. Iteratively, each receiver uses the heuristic

again to construct layer k+1.

We will present the numeric results for the throughput obtained using m-Layer, 1-Layer and the heuristic

approaches and discuss the throughput gaps among the three approaches in section 5.

4. Distributed Approach to Overlay Multicast

The challenge in applying network coding to current Internet lies in that routers usually do not support addi-

tional coding operation. As end hosts in overlay networks can provide additional computing capabilities and

storage, which is potentially suitable for network coding, we also extend our heuristic to overlay multicast.

In this section, we present LION, a layer distributed implementation of the heuristic approach in overlay

network.

4.1. Basic Overlay Network Construction

We follow the approach used in [8] to construct the basic overlay network. We do not focus on how to con-

struct the overlay network. Instead, we use existing bootstrapping techniques, e.g. Narada, to form a well-

constructed basic overlay network. Suppose the overlay network is relatively densely connected so that

there exist multiple paths between any nodes. We build layered meshes on top of the basic overlay network.

The links in the basic overlay network have two weights (B, D), representing available bandwidth and delay,

respectively. Each end host periodically probes other non-neighbors and measures (B, D) to see if new links

can be added. If (B, D) satisfy a pre-defined threshold, the link is added, otherwise, the link is dropped. As

in [8], we assume there are dedicated pure relay nodes in the overlay network. We also impose a node de-

gree constraint on each relay node such that the number of links passing a node is limited, by which we re-

strict the stress of the overlay network [8].

The construction of data distribution mesh within each layer is carried in two steps: selecting path and re-

serving path. We first use flooding to find all possible paths for each receiver, and then each receiver selects

a number of paths to construct a data distribution mesh. Each receiver then sends a request back to sender to

reserve the selected paths and assign the amount of stripes along each path. As the mesh is constructed, each

receiver update all the (B, D) of its paths.

By iteratively repeating the above approach, we can construct layered meshes on top of the basic overlay

network.

4.2. Finding Path

Before constructing layered meshes, each receiver needs to exploit multiple paths from the sender which are

potentially suited for network coding. Finding edge-disjoint paths for each sender-receiver pair and select-

ing edge-overlap paths among different receivers can increase the possibility for network coding and leave

more available bandwidth for next layer. We use a greedy method to find disjoint paths for each receiver.

The sender floods a Finding Path packet, FP, to all its neighbors. When a relay node R1 receives a FP

packet from relay node R2, it first checks if its ID is already included in the packet. If so, node R1 drops the

packet to avoid loop. Otherwise, it appends its node ID and the last hop link weights (B, D) to the FP packet

and sends the revised FP packet to all other neighbors excluding R2. A node may receive multiple FP pack-

ets from different incoming links. The FP packets are terminated at receiver nodes. Each FP packet repre-

sents a path from the sender to the receiver. A receiver just checks the FP packets and records them as

available paths.

Some optimization can be enforced to further reduce flooding traffic. We can define a delay and bandwidth

threshold. If an FP packet exceeds the delay threshold, it will be discarded. If a link’s available bandwidth

does not meet the minimal requirement, the path will also be excluded.

The pseudo-code for finding path phase is summarized in Fig. 3.

Fig. 3. Pseudo-code for finding path using flooding

4.3. Constructing Layered Mesh

As different overlay links may traverse a same IP link, it is not practical to directly apply the Ford-

Fulkerson algorithm to overlay network to find the maxflow for a receiver. Since each receiver needs to

select enough paths to join a layer and tries to have as many overlapping paths with other receivers as pos-

sible, we use a heuristic that each receiver selects the maximal number of disjoint paths from the discovered

available paths. By temporarily setting each overlay link to the same bandwidth, finding maximal number of

disjoint paths is equivalent to finding maximal capacity in the available paths. Therefore, each receiver can

use the Ford-Fulkerson algorithm to obtain the maximal number of disjoint paths. We denote the obtained

path set as max-disjoint paths. Suppose there are NMD disjoint paths in max-disjoint paths. We further pack-

etize the source data into small-grained stripes. Suppose layer k has Kk stripes, therefore the bit-rate of a

stripe is Bk/Kk.

Sender S:
Send FP to all neighbors

Upon receiving a FP, Relay R:
 Check if it is included in FP and if the last hop link satisfies the delay and band-
width requirements
 if FP satisfied all requirements

forwards FP to all neighbors
 else
 drop FP
Upon receiving a FP, Receiver T:
 Record the path
 Discard FP

Suppose path j has available bandwidth Cj. Therefore path j can carry NMj=Cj/(Bk/Kk) stripes for layer k.

NMj is rounded down to the nearest integer. Only the receivers whose max-disjoint paths can afford all

stripes in layer k can join layer k.

During constructing the mesh for layer k, each node selects paths from max-disjoint paths in a distributed

manner using the heuristic: evenly assigning the stripes in layer k on all paths in max-disjoint paths. This is

to distribute the stripes as wide as possible to maximize the possibility of path overlapping. This is similar

with the approach in table I except that the flow is assigned in stripes in overlay multicast. If the number of

max-disjoint paths is larger than the stripe amount in layer k, each receiver chooses paths with smaller delay.

Otherwise, choose all paths. Assume that the assigned number of stripes on path j is SNj. After each receiver

determines how many stripes a path carries, it sends a reservation packet along the path back to the sender.

Assume that receiver ti (1≤i≤NT) is assigned Ni,m stripes on link m (1≤m≤M). Each relay node aggregates the

reservations from its downstream link m to calculate the required amount of stripes Nm=max(Ni,m) (1≤i≤NT)

on link m. The reservations terminate at the sender. The sender also calculates the required amount of

stripes on its downstream links. The reserved overlay links form the data distribution mesh in this layer. The

pseudo-code for constructing mesh is shown in Fig. 4.

Fig. 4. Pseudo-code for constructing a mesh for a layer

Iteratively, each receiver will update the available bandwidth of its maximal-disjoint paths for the next layer

and repeat the reservation to get next layer. The procedure repeats till there are no receivers who can join

higher layer.

4.4. Network Coding

After each layer’s mesh is constructed, the sender sends corresponding layer’s data to each downstream link

at the reserved rate. During the data transmission, a relay node performs network coding for the stripes (in

the same layer) from different upstream links and sends the reserved amount of coded stripes to downstream

links.

There exist polynomial-time algorithms [9] [10] to assign the deterministic coding vectors on the distribution

mesh. However, random network coding [11] provides less complexity since it avoids the need to determine

coding vectors before data distribution as well as the need to decide which data should be delivered along

which path. We adopt the idea of practical random coding from Chou et al. [12]. After each layer is con-

Receiver T:

Update the available bandwidth of each path in maximal disjoint paths
Assign stripes on the max-disjoint paths
Reserve the assigned stripes back to the sender along the path

Relay R:
Aggregate the reservation from different receivers
Forward the reservation along the path

Sender S:
Send required number of stripes to its next hops

structed, we use random linear coding in the layer. The stripes from different upstream links are combined

with random operation over a large Galois Field.

To ensure easy operation, we assume that network coding is only performed within each layer. Combining

stripes using network coding among different layers makes it difficult to decode for receivers with low

available bandwidth.

Similar to previous layered multicast solutions [13], LION adapts to varying network conditions in a dis-

tributed manner. The meshes are constructed and removed dynamically over time. In case of congestion,

data in higher layers are dropped first. When the packet loss in a layer exceeds a threshold, a receiver will

notify its upstream parents and leave the corresponding mesh. If a relay node has no downstream children, it

will also notify its parents and stop forwarding the data in the layer. In this way, congestion is alleviated. If

there are no receivers being able to join a certain layer, the mesh of that layer is removed. To avoid fluctua-

tion, a receiver will postpone its next attempt to join layers after it leaves a mesh*.

5. SIMULATIONS

In this section, we first show the numerical results for our heuristic on a physical network, followed by

simulation results on an overlay network.

5.1. Throughput Gaps

In this section, we present the numerical results that compare the throughputs among the m-layer, 1-layer

and the heuristic approaches.

The underlying networks were generated using the transit-stub model of GT-ITM [15]. The number of

routers is 30. There are 6 to 22 receivers that are randomly attached to the routers. The available link band-

width between transit routers is randomly set at 10-50Kbps. The available link bandwidth between transit

routers and stub routers is 100Kbps. The sender’s last hop link is set at 500Kbps, receiver’s last hop link

bandwidth is randomly set from 60 to 500Kbps. The source data has 20 layers, each layer has uniform bit-

rate of 10Kbps.

We compare the throughput of m-Layer ILP, 1-Layer ILP, the heuristic approach, and the most prevalent IP

multicast scheme using DVMRP [24] and SWP (Shortest Widest Path) [25]. DVMRP builds a shortest tree

while SWP builds a widest tree rooted at the sender. Note that both DVMRP and SWP use multi-rate, each

receiver chooses maximal number of layers to satisfy its available bandwidth.

We solve the m-Layer and 1-Layer ILP using Lingo [26]. The performance of the heuristic is obtained

through simulation in C++ code. The results are averaged across 5 runs. The throughput gap is denoted by

the ratio of the throughput to m-Layer’s throughput. We summarize the results in Table I.

Table I. Throughput Gap among m-Layer, 1-Layer and heuristic approaches

Receiver Size m-Layer 1-Layer Heuristic DVMRP SWP

6 1 0.99245 0.91562 0.49026 0.60354

10 1 0.96553 0.92372 0.58331 0.65919

14 1 0.96838 0.87113 0.52223 0.57147

18 1 0.97019 0.89223 0.56225 0.61253

22 1 0.99806 0.88355 0.56879 0.60794

Since the m-Layer formulation jointly considers all the layers and all the receivers, the resultant solution is

global optimal. While the 1-Layer formulation just considers the optimal solution within one layer, the per-

formance is sub-optimal comparing to the m-Layer formulation. The proposed heuristic obtains the solution

in a distributed manner which does not need information about all the receivers and consequently may result

in worse performance than 1-Layer formulation. From the numerical results in Table I, we note that the

throughput gaps between the m-Layer and the heuristic approaches are reasonably small (varies from 8% to

13% under different receiver size), given that the heuristic does not require global information and is a dis-

tributed approach. This demonstrates the effectiveness of the proposed heuristic. Furthermore, the gap be-

tween the m-Layer and the heuristic approaches increases as the receiver size increases. Even though there

are some gaps between the m-Layer and the heuristic approaches, the heuristic approach still outperforms

both DVMRP and SWP by about 50%, which is very significant. This is mainly due to the fact that the pro-

posed heuristic exploits multiple paths between sender and receivers with the help of network coding.

5.2. Overlay Network

We evaluate the performance of LION, the proposed heuristic algorithm in an overlay network, through

extensive simulations. The simulations were conducted in a simulator written in C++. The underlying

router-level networks were generated using the transit-stub model of GT-ITM. We create end hosts and ran-

domly connect them to the routers chosen from the stub domain. We compare LION with Narada [1] and

Coded Multicast [8] using the following metrics.

1) Throughput: we measure the application layer throughput at each receiver. The multicast session’s

throughput is averaged over all receivers.

2) Delay: The end-to-end delay is defined as the time interval between the time a packet is being sent at the

sender and the time the packet is correctly decoded at the receiver. As for Coded Multicast and LION,

the end-to-end delay is defined as the longest delay among all the paths involved. The session’s delay is

averaged over all receivers.

* There already have large amount of work addressing how much time receivers have to wait for next attempt to join a

certain layer to avoid message explosion [13]. We rely on existing work to solve this issue.

3) Normalized Resource Usage Ratio (NRUR). Resource usage ratio (RUR) is defined as ∑∑ ==
TN

j j

M

i i Tb
11

/ ,

where bi is the consumed bandwidth on IP link i which is involved in the session and Tj is receiver j’s

throughput. RUR reflects the network resource’s efficiency that is, how much network resource is con-

sumed to achieve a unit throughput. The higher the value of RUR is, the more network resource the mul-

ticast session consumes to deliver a bit of data. Normalized RUR (NRUR) is defined as the ratio of each

scheme’s RUR over DVMRP [24]’s RUR. NRUR reflect the overlay multicast’s penalty compared with

traditional IP multicast.

Stress, which is defined as the number of identical copies of a packet carried by a physical link [1], is a

commonly used metric to evaluate overlay multicast’s performance. Similar to NRUR, stress also reflects

the overlay multicast’s resource consumption penalty on each physical link compared with IP multicast.

However, as network coding involves coding the packets in the network, it is not intuitive to directly calcu-

late stress for a physical link under Coded Multicast and LION. Instead, we use NRUR to reflect the overlay

multicast’s overall resource consumption penalty compared with IP multicast.

Three sets of simulations, namely scenario 1, 2 and 3, were conducted using the simulator.

Table II Link bandwidth between routers and end-systems chosen for scenario 1, 2 and 3

Parameter Value

Routers in different transit 1-5Mbps

Routers in same transit 5-10Mbps

Transit router-Stub router 10Mbps

Stub router-Stub router 5Mbps

Stub Router-sender 5Mbps

Stub Router-relay 5Mbps

Stub Router-receiver 0.5-5Mbps

Scenario 1’s underlying network consists of 800 routers. Scenario 2’s underlying network consists of 1500

routers. Scenario 3’s underlying network consists of 2000 routers. Other setups are summarized in Table II.

The link bandwidth between transit domain routers is randomly set at 5-10Mbps. The link bandwidth be-

tween stub domain routers is set at 10Mbps. We set receiver’s last hop link bandwidth randomly from

500Kbps to 5Mbps. The delay of link is randomly set at 5-20ms. Without loss generality, we do not model

the queuing delay. The number of receivers ranges from 10 to 250. Suppose we have dedicated relay nodes

in the overlay network. We set the ratio of relay size to receiver size 1.2.

To ensure fair comparison, Narada, Coded Multicast and LION have the same physical network and par-

ticipant end hosts in each scenario. Each curve in all the plots is an average over 50 simulation runs.

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

Receiver Size

T
hr

ou
gh

pu
t (

K
bp

s)

Narada
CodedMcast
LION

(a)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

Receiver Size

T
hr

ou
gh

pu
t (

K
bp

s)

Narada
CodedMcast
LION

(b)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

Receiver Size

T
hr

ou
gh

pu
t (

K
bp

s)

Narada
CodedMcast
LION

(c)

Fig. 5. Average throughput versus receiver size. (a) scenario 1 (800 routers). (b) scenario 2 (1500 routers). and (c)

scenario 3 (2000 routers).

Fig 5. plots the average throughput of Narada, Coded Multicast and LION as a function of the receiver size

for scenario 1, 2 and 3, respectively.

It can be observed from Fig. 5 that LION outperforms both Narada and Coded Multicast at all receiver sizes.

As Coded Multicast uses network coding, the throughput is higher than that of Narada. Because LION con-

siders each receiver’s heterogeneity the throughput of receivers with higher available bandwidth can be im-

proved by joining more layers. Hence the session’s average throughput is improved. This highlights the

benefits of LION. With the increase of the number of receivers, the throughput of the session decreases.

This is due to the imperfect construction of all three kinds overlay networks. With the increase of the num-

ber of receivers, more overlay links will map to the same physical links. The stress of the shared physical

link will increase, which indicates more wastage of network resource. The increase of receiver size also

introduces fiercer competition among receivers to the limited bandwidth shared among them. In conse-

quence, the session throughput decreases. However, LION still outperforms both Narada and Coded Multi-

cast.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Receiver Size

D
el

ay
 (

m
s)

Narada
CodedMcast
LION

(a)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Receiver Size

D
el

ay
 (

m
s)

Narada
CodedMcast
LION

(b)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Receiver Size

D
el

ay
 (

m
s)

Narada
CodedMcast
LION

(c)

Fig 6. Average delay versus receiver size. (a) scenario 1 (800 routers). (b) scenario 2 (1500 routers). and (c) sce-

nario 3 (2000 routers).

Fig. 6 plots the average delays as a function of the receiver size for Narada, Coded Multicast and LION,

respectively. It is clear that Narada has the lowest delay since it uses single path with smallest delay (among

all the possible paths from sender to a receiver). LION and Coded multicast have higher delays than Narada

since they use multiple paths and the data transmission delay is aligned with the path with highest delay.

Furthermore LION and Coded multicast can carry more data and the delay is averaged over not only those

data normally accepted under Narada but also those additional data under LION or Coded multicast. As

LION selects more paths than both Narada and coded multicast, it is reasonable that LION has the highest

delay. We believe that the degradation of delay is compensated by throughput improvement. From Fig. 6

we can also observe that the increase in delay is not proportional to the increase in receiver size.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Receiver Size

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

 R
at

io

Narada
CodedMcast
LION

(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Receiver Size

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

 R
at

io

Narada
CodedMcast
LION

(b)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Receiver Size

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

 R
at

io

Narada
CodedMcast
LION

(c)

Fig. 7 Normalized Resource Usage Ratio versus receiver size. (a) scenario 1 (800 routers). (b) sce-

nario 2 (1500 routers). and (c) scenario 3 (2000 routers).

Fig. 7 displays Normalized Resource Usage Ratio (NRUR) versus receiver size for Narada, Coded Multi-

cast and LION. We observe in Fig. 7 that Narada has the lowest NRUR. This is because that multi-path

transmission inherently results in larger RUR since it involves more links. LION has a slightly higher

NRUR than Coded Multicast. It is reasonable since LION selects more paths and utilizes the links which

have available bandwidth to improve throughput. The increase in LION’s NRUR is not significant and not

sensitive to the variation of receiver size.

We also investigate the impact of relay size on performance. We fix the receiver size to 100, and change the

relay size from 10 to 200. Other simulation setups are same as in scenario 1.

Fig 8 shows the throughput as a function of relay size for Narada, Coded Multicast and LION. It is clear

that since both Coded Multicast and LION need dedicated relays nodes, the session’s average throughput

increase with relay size. When relay size is small, more receivers will connect to a same relay, therefore the

relay will become the bottleneck. Meanwhile some receivers can not find enough relay to connect to sender

due to the relay’s degree constraint. Therefore, the session’s throughput increases with relay size. However,

when the relay size is larger than receiver size (100), the throughput does not increase anymore as the relay

size increases. This is because when relay size is large enough, relay will not be a bottleneck. Hence addi-

tional relays will not necessarily increase the session’s throughput.

.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Relay Size

T
hr

ou
gh

pu
t (

K
bp

s)
Narada
CodedMcast
LION

Fig. 8. Average Throughput versus relay size for Narada Coded Multicast and LION.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Relay Size

D
el

ay
 (

m
s)

Narada
CodedMcast
LION

Fig. 9. Average Delay versus relay size for Narada Coded Multicast and LION.

Fig. 9 plots the average delay as a function of relay size for Narada, Coded Multicast and LION. As can be

seen, the changes in delay under Narada are small. Coded Multicast and LION’s delays first increase with

relay size when the relay size is small. However the delay decreases or remains the same when the relay size

is larger than receiver size, since receivers may find better relays in the paths which results in smaller delay.

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

Relay Size

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

 R
at

io

Narada
CodedMcast
LION

Fig. 10. Normalized Resource Usage Ratio versus relay size for Narada Coded Multicast and LION.

We observe in Fig. 10 that the NRURs of Coded Multicast and LION are much higher than that of Narada

when the relay size is small. This is because, due to the node degree constraint enforced when constructing

the basic overlay network [8], when relay size is small, some receivers can not find relay nodes and there-

fore can not join the multicast session which results in zero throughput. The links involved have low effi-

ciency since they can only serve part of the receivers. Hence the NRURs of LION and Coded Multicast are

high when relay size is small. The NRUR of Narada is almost constant for all relay size since Narada does

not require dedicated relay nodes. For relay size larger than receiver size (100), the NRURs of Coded Mul-

ticast and LION are nearly constants and in the same order with that of Narada.

In summary, LION improves the session’s throughput significantly while keeping the delay and network

resource consumption under a reasonable value.

6. CONCLUSIONS

In this paper, we seek to improve multicast session throughput in heterogeneous overlay networks using

network coding with the presence of the relay nodes. Given that the bandwidth between multicast sender

and receivers is heterogeneous in nature, we propose a layered overlay multicast scheme to improve the

throughput. Instead of building single or multiple trees, we construct the data distribution paths as multiple

layered meshes. We first formulate the problem and then propose a distributed heuristic to approximate the

optimal solution. Simulation results demonstrate that the overall throughput of a multicast session is signifi-

cantly improved compared with existing works. Note that one of the limitations LION may have is that it’s

sensitive to the event of node join and leave. It may introduce certain overhead since sender may flood the

network to find a better solution when node join or leave happens. However, we believe LION still has

some applicable scenarios such as small scale overlay networks or a network which has relative static node

membership.

Future works include implementing LION in Internet and combining LION with layered coding, say, FGS,

PFGS, to provide scalable video delivery in a heterogeneous environment.

REFERENCES

[1] Yang-hua Chu, Sanjay G. Rao, Hui Zhang, “A case for end system multicast,” in Proc. ACM

SIGMETRICS 2000.

[2] V. Padmanabhan, H. Wang, P. Chou, K. Sripanidkulchai, “Distributing streaming media content using

cooperative networking,” in Proc. ACM NOSSDAV, May 2002.

[3] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, A. Singh, “SplitStream: high-

bandwidth multicast in a cooperative environment,” in Proc. ACM SOSP, Oct. 2003

[4] Y. Zhu, J. Guo, B. Li, “oEvolve: towards evolutionary overlay topologies for high bandwidth data dis-

semination,” IEEE JSAC, Sep. 2004.

[5] R. Ahlswede, N. Cai, S. Li, R. Yeung, “Network information flow,” IEEE Trans. on Information. The-

ory, vol. 46, pp. 1204-1216, 2000.

[6] S. Li, R. Yeung, N. Cai, “Linear network coding,” IEEE Trans. on Information. Theory, Vol. 49(2)

pp.371-381, Feb. 2003.

[7] R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. on Networking,

Vol. 11(5), pp.782-795 Oct. 2003.

[8] Y. Zhu, B. Li, J. Guo, “Multicast with network coding in application-layer overlay networks,” IEEE

JSAC, Jan. 2004.

[9] P. Sanders, S. Egner, L. Tolhuizen. “Polynomial Time algorithms for Network information flow”. In

Proc. of ACM SPAA, pp.286-294, June 2003

[10] S. Jaggi, P.A. Chou, K. Jain. “Low complexity algebraic multicast codes. In: Proc of IEEE ISIT 2003

[11] T. Ho, R. Koetter, M. Medard, D. Karger and M. Effros, "The Benefits of Coding over Routing in a

Randomized Setting", IEEE ISIT 2003

[12] P. Chou, Y. Wu, K. Jain, “Practical network coding,” in Proc. 41st Allerton Conf. on Communication

Control and Computing, 2003.

[13] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven layered multicast,” in Proc. ACM SIGCOMM ,

Sept. 1996.

[14] Y. Cui, K. Nahrstedt, “Layered peer-to-peer streaming,” in Proc. ACM NOSSDAV 2003.

[15] E. Zegura, K. Calvert, S. Bhattacharjee, “How to model an internetwork,” in Proc. IEEE INFOCOM,

1996.

[16] S. Saroiu, P. Gummadi, S. Gribble, “A measurement study of peer-to-peer file sharing systems,” in

Proc. ACM/SPIE MMCN, Jan. 2002.

[17] S. Savage, A. Collins, E. Hoffman, J. Snell, T. Anderson, “The end-to-end effects of Internet path se-

lection,” in Proc. ACM SIGCOMM, Aug. 1999.

[18] D. Andersen, H. Balakrishnan, M. Kaashoek, R. Morris, “Resilient overlay networks,” in Proc. ACM

SOSP, Oct. 2001.

[19] K. Menger, “Zur allgemeinen Kurventheorie,” Fund. Math.,vol. 10, pp.95-115, 1927.

[20] L. Ford, D. Fulkerson, “Maximal flow through a network,” Canadian J. Mathematics, vol. 8: 399-404,

1956.

[21] J. Edmonds, “Edge-disjoint branchings,” in Combinatorial Algorithms, Ed. R. Rustin, Algorithmics

Press, New York, 1973, 91-96.

[22] K. Jain, M. Mahdian, M. Salavatipour, “Packing Steiner Trees,” ACM-SIAM SODA 2003.

[23] F. K. Hwang, D. S. Richards, and P. Winter. “ The Steiner Tree Problem” In: Annals of Discrete

Mathematics series 53, North-Holland, 1992

[24] S. Deering, D. Cheriton, “Multicast routing in datagram internetworks and extended LANs,” ACM

Trans. on Computer Systems, vol. 8(2), pp. 85-111, May 1990

[25] Zheng Wang, Jon Crowcroft, "Quality of Service Routing for Supporting Multimedia Applications",

IEEE JSAC, Vol. 14, No. 7, September 1996, pp.1288-1234.

[26] Lingo optimization solver, http://www.lindo.com

